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Abstract

This paper presents a new technique called Prior Policy Fallback (PPF) which

provides a simple means of incorporating prior knowledge into a reinforcement learning

system based on Q-learning. PPF performs significantly better than an intuitively

similar method based on selectively initializing values of the Q table. The benefits of

PPF occur because PPF does not adversely interact with the normal Q-learning update

mechanisms. PPF simply accelerates the time to reward during initial trials and then

gradually becomes less involved as normal Q-learning updates occur. PPF provides
an alternative to manual teaching methods for accelerating learning during early trials

and can be used in conjunction with many of the existing methods for accelerating

Q-learning updates. The benefits of PPF are illustrated through several experiments

based on a static grid-based world.





1 Introduction

Engineered devices which interact with the physical world are often developed without the

benefit of knowing exactly which situations the device may encounter during execution.

When information about the expected operation environment is limited, it becomes difficult

to define, in advance, appropriate responses for all expected situations. Reinforcement learn-

ing is an appealing technique for a device or agent to learn appropriate responses to situations

as they are experienced. Reinforcement learning is reminiscent of our own trial-and-error

learning periods of childhood where various possible actions were taken in many different

situations, a few of which would result in reward (a parental "good job"). Eventually, we

learn to construct sequences of actions which proactively lead us to reward.

The reinforcement learning problem can be loosely framed as one of learning a policy for

selecting actions in various states of the world in order to achieve reward. A fairly popular,

recent framework for formalizing the reinforcement learning problem is called Q-learning

[Watkins, 1989]. Intuitively, Q-learning develops a policy by incrementally improving a Q-

value assigned to every possible state-action pair of the environment. To execute the policy,

we simply select the action with the largest Q-value for the current state. Q-learning is able

to learn an optimal policy (subject to some conditions, [Watkins, 1989]) without any prior

knowledge or model of the environment.

The problem with Q-learning, however, is that often learning rates are quite slow. Since

rewards may only be received when a goal is fully satisfied (e.g., consider a simple path plan-

ning task), the situations and actions must be experienced many times until the Q-values

converge. To address the slow convergence problem, various techniques have been proposed

which range from teaching the agent by providing sample execution traces [Lin, 1991], to

building action models of the environment which are then used to develop hypothetical

experiences to use in addition to actual experiences [McCallum, 92; Sutton, 1990]. A disad-

vantage of training methods is that they require a person to be involved during execution

to provide the training. A disadvantage of methods based on hypothetical updates is that

their benefit typically does not begin until after some reward has been initially achieved.

Incorporation of prior knowledge (e.g., the goal is most likely to the east), is another

technique which may be used to accelerate Q-learning rates. This paper presents a new

technique called Prior Policy Fallback (PPF) which provides a simple means of incorporating

prior knowledge into a Q-learning framework. The surprising benefit of PPF is that it can

work much better than an intuitively similar method which involves modifying the initial

Q-values. The next section of this paper provides a brief introduction to Q-learning. Section

3 presents the Prior Policy Fallback technique and section 4 provides experimental results

which illustrate its benefit. Section 5 presents related work and Section 6 concludes.



2 Q-Learning

One set of techniques for determining an optimal policy is based on the theory of dynamic

programming [Bertsekas, 1987]. Watkins [1989] has studied the relationship between dy-

namic programming and reinforcement learning and has proposed a new reinforcement learn-

ing technique called Q-learning. The Q-learning approach maintains, for each state-action

pair, an estimate (Q-value) of the value of taking action a in state x. Q-value estimates

are maintained for each state-action pair and axe updated incrementally until the Q-values

converge to optimal values. The Q-value measures the expected total discounted reward

obtained by taking action a in state x, followed by taking actions per the optimal policy

thereafter. That is,

Q(x,a) = E{r + 7" V(y) l x, a}

where 3', 0 < 7 < 1, is a temporal discount rate, r is the immediate reward obtained,

and V(y) is the maximum of the Q-values for the resulting state y.

Q-learning proceeds similarly to Sutton's [1988] method of temporal differences. An

agent tries an action in a particular state, then evaluates the consequences of the action in

terms of any immediate reward received and an estimate of the value of the state in which

the agent finds itself. At each time step, the learning system observes the current state x,

takes action a, observes the next state y, and receives immediate reward r. If we assume

a tabular representation for the Q-values, Q(x, a) will be left unchanged for all state-action

pairs not equal to (x, a) and Q(x, a) will be updated by

Q(x,a)=Q(x,a)+a(r +_, V(y)-Q(x,a))

where a, 0 < a < 1, is a learning rate parameter.

Watkins and Dayan [1992] show that, provided each state-action pair is experienced

an infinite number of times, no matter what the initial Q-values are, they will eventually

converge to the optimal policy. When all Q-values are initialized to zero, no Q-value updates

occur until an action is taken which results in reward (e.g., reaching a goal location). This

causes the state which led to the reward to have its Q-value modified per the update equation

given above. Thus after many experiences, Q-values will propagate backwards from the goal

until an optimal gradient of Q-values is produced.

Q-learning systems actually employed on agents are subject to tension between "perform-

ing actions that are not well understood in order to gain information about their reinforce-

ment value and performing actions that are expected to be good in order to increase overall

reinforcement." [Kaebling, 1990] A typical approach is to include an exploration bonus b in

the action selection algorithm for the agent. Rather that always choosing the action with the

highest Q-value, b percent of the time an action is taken which is not a maximum Q-value



action. Sutton [1990] presents a more sophisticated exploration technique which modifies

the Q-value update equation to cause unexplored state-action pairs to be actively sought

out.

Initializing Q-values to zero is equivalent to defining an initial random policy. Under

this policy, the agent will search (wander) randomly until it accidentally stumbles across a

reward state and the first Q-value update is made. Whitehead [1991] states that "The time

complexity of this search strongly depends upon the size and structure of the state space

and upon a priori knowledge encoded in the learner's initial parameter values." He further

provides a theorem which basically states that a zero-initialized Q-learning system can have

a search time that is exponential in the depth of the state space. These results suggest that

reward functions which do not yield any sort of gradient (e.g., non-zero reward only at a

goal location) provide insufficient feedback to allow tractable learning for complex domains.

In the following section we present a simple mechanism for encoding a priori knowledge

which directly addresses the complexity associated with the initial searches in the domain.

3 Prior Policy Fallback

Prior Policy Fallback (PPF) is a simple mechanism for incorporating a priori knowledge

about a domain without disrupting the existing Q-learning update mechanisms. The basic

intuition is that when useful a priori information about a domain is available, it should be

incorporated into the Q-learning framework. We will assume that the a priori knowledge

can be represented as a function from a state x to a preferred action a to take in that

state. The problem with simply trying to define an optimal policy in advance is that some

information may not be available until the agent is actually deployed in the environment.

If all required information was available, it would be straightforward to directly define the

optimal policy and learning would not be required. More likely, knowledge is incomplete

but some regularities about the domain are known in advance and these can be provided to

the agent as part of a default or "prior" policy. Thus, defining a prior policy amounts to no

more than simply defining a partial function from states to actions.

Once a prior policy has been defined, we can now slightly generalize the action selection

mechanism of Q-learning. The standard model for action selection in Q-learning is that

the Q-values for the state-action pairs associated with the current state are compared and

the largest Q-value determines which action to select in the state. This scheme is often

modified to include an exploration percentage as discussed above to occasionally select a

non-maximum Q-value action. When all the Q-values associated with a state are identical

(e.g., when the system has been zero-initialized), we say the Q-values provide no advice.

We can now define Prior Policy Fallback as simply specifying that if the Q-values for

a state provide no advice, then "fallback" on the prior policy to select an action. Thus,

any a priori policy is clearly only considered until Q-value estimates have been propagated



to that state by the normal update mechanisms. The advantage of this approach is that

the prior policy "gets out of the way" once Q-value updates start progressing. Note that

an exploration percentage is still required because otherwise, the prior policy could be a

deterministic policy that simply leads to a dead end.

Our basic goal in using PPF is to be able to define a prior policy, in combination with an

exploration strategy, that will be more likely than a random policy to find the goal and start

the normal Q-value updating. An alternative approach to requiring an exploration strategy

would be to allow nondeterministic prior policies which have non-zero probabilities for all

possible actions. We do not consider this approach further in this work.

One of the advantages of PPF is that it can be used in conjunction with existing tech-

niques for accelerating the backwards propagation of Q-values ([Moore & Atkeson, 1993],

[Peng & Williams, 1993]). Of course PPF is not without its limitations. The prior policy is

just a heuristic and poorly chosen, it can hurt more than it helps.

4 Experiments

In this section we present the results from several experiments which compare PPF to a

biased Q-value initialization approach. We also show that PPF can be productively used

in conjunction with other existing techniques for accelerating Q-learning. The experiments

presented in this section are modifications to several of the experiments presented in Sut-

ton[1990] regarding the DYNA-Q system.

DYNA is an architecture for exploring tradeoffs between systems that plan using an in-

ternal world model, systems that react using precompiled situation-action rules, and systems

that learn through some type of trial-and-error or reinforcement learning. Sutton introduced

a simple navigation task to evaluate the performance of his DYNA systems. Although Sutton

used this specific task to evaluate the performance of his DYNA-PI (policy iteration) system,

we use it here to evaluate Q-learning approaches. The task involves navigation of an agent

in a grid-based world from a starting location to a goal location. We have represented the

agent's world using a simulator called NASA TileWorld [Philips & Bresina, 1991]. Obstacles

are present in the world as seen in Figure 1. The agent's initial location is indicated by the

small circular icon near the west (left) edge of the world. The goal location is not indicated

but is the square in the north-east corner of the world.

The learning task is to develop a policy which will direct the agent over the shortest path

from the initial starting location to the goal location. The reward system gives the agent a

reward of one for reaching the goal location and zero for all other states. We define a trial to

be one successful trip from the starting location to the goal location. After completing a trial

and receiving reward, the agent is automatically transferred back to the starting location to

begin a new trial. If we assume that the agent is given no prior knowledge (zero-initialized

Q-values), the initial behavior of the agent will be that of a random walk. The initial trials
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Figure 1: Test Environment

may take many steps because the expected number of steps required to "stumble" across

the goal will be quite large. However, as trials are completed, Q-value updates begin to

propagate Q-values back from the goal location and the steps per trial will decrease until

finally reaching the shortest path length.

Following Sutton [1990], system performance is measured as the number of steps required

per trial. For this series of experiments, the learning rate and the discount rate were simply

chosen from the values selected for Sutton's DYNA-Q experiments [Sutton, 1990]. The

learning rate a was set at 0.5 and the temporal discount rate 7 was set at 0.9. The exploration

percentage was set so that 10% of the time, an exploration action would be taken. Note that

these experiments assume a deterministic world. Issues associated with actually learning

the action models for the environment are not part of this work. As in Sutton [1990], we

simply assume that an action model will be learned. Based on this action model, we have

only included the possible state-action pairs in the tabular representation of Q-values.

To evaluate the relative benefits of PPF, a random walk (zero-initialized Q-values) was

chosen as the baseline. Against this baseline we wish to compare two intuitively similar

techniques for encoding prior knowledge. The prior knowledge we wish to encode will simply

be the heuristic "go east". The first technique, called Prior Initialized Q-values, will simply

involve initializing the Q-values to a non-zero value for all east moves. For this experiment,

an initial Q-value of 1.0 was arbitrarily chosen for these east moves. The second approach for

encoding the "go east" heuristic knowledge is based on PPF. A simple function was written

which given a state, returns a move of east if it is possible in that state.

To perform action selection using PPF, the current Q-values for the state, the exploration

percentage, and the default policy may all be involved. If only one action is possible in a

state, this action will be selected. If there are any actions other than those having maximum

Q-value, the exploration strategy will cause one of those actions to be chosen randomly,

10% of the time. If we have uniform Q-values, and a prior policy (per PPF) which is

recommending an action, the prior policy action will be selected. If none of the preceding

conditions hold, then one of the Q-value recommended actions is chosen at random (since

there may more than one action having the same maximum Q-value).

The results of this experiment are shown in Figure 2. The vertical axis shows the number



4O0O

35O0

3OO0

25O0

2000

1500

1000

50O

0

Prior-initialized Q-values --
(95% Con/)

Zero-initialized Q-values ........
(95% Con/)

_.. PriorPolicyFallback

(95% Con/)

'"-....

...... _---_i--._..._................................

5 10 15 20
Number of Trials

Figure 2: Comparison of Prior Knowledge Encodings

of physical steps required per trial. The horizontal axis indicates the trial number. Three

curves are shown corresponding to the prior-initialized case, the zero-initialized case, and the

PPF case. For each curve, error bars indicating a 95% confidence interval are also shown. 1

To facilitate identification of the curves using the key, the vertical order of the key entries

corresponds to the vertical ordering of the leftmost point of each curve. 2 As expected, the

number of steps per trial decreases as the agent gains more experience in the world (more

trials). We see that the zero-initialized Q-learning system takes about 600 steps for the

initial trial and gradually improves. We also see that, as we had hoped, PPF provides a

significant improvement over the zero-initialized case. For the prior-initialized case we have

a somewhat surprising result. Although after 4 trials it does better than the zero-initialized

case, initially it does much worse, taking several thousand steps during the early trials. This

result is somewhat surprising because prior-initialized Q-values and PPF both seem to be

intuitively similar methods for encoding our "go east" heuristic, but they clearly perform
very differently.

The results shown in Figure 2 raise an obvious question about the potential impact

of the magnitude of the Q-value chosen for prior-initialization. The Figure 2 results were

obtained with an arbitrarily chosen Q-value of 1.0 for all east moves. Considering that

Q-values eventually converge to a gradient, might a different choice for initial Q-values do

substantially better? Intuitively, initial Q-values close to the resulting gradient values would

be more desirable. However, chosing those values is more difficult than encoding a static

"go-east" bias. Further, those values may not transfer across problems. For example, if the

obstacles of the DYNA world were rearranged, the Q-value gradient could be quite different.

What we wish _o encode here is a simple bias that can be useful over many different problem
instances.

To evaluate the impact of the prior-initialization Q-value, two additional tests were run

with initial east Q-values of 0.01 and 100. These results, along with the original 1.0 prior-

initialization results, are shown in Figure 3. Error bars have been removed to make it

1Typically 50 to 100 samples were taken per curve for all figures in this paper.

2This type of key ordering has been used for each of the plots in this paper.
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Figure 3: Comparison of Initial Q-value Settings

easier to distinguish the lines. We see that these other Q-values are actually worse than our

initial guess of 1.0. Although we may be able to further improve on the results obtained

with initialization at 1.0, multiple repetitive attempts are likely to be required unless we

actually attempt to compute the Q-values for convergence. Of course if we do this then

we've essentially solved the problem. Thus, these results help confirm that trying to choose

initial Q-values to encode an heuristic bias is not as effective as PPF for accelerating learning

rates during initial trials.

A final experiment was conducted to compare the benefits of PPF with the form of

incremental hypothetical planning explored by Sutton [1990]. For this final experiment,

Sutton's hypothetical experience mechanism was implemented and the same learning rate

and discount rate parameters were used as in the previous experiments. The only difference

is that after every physical action, it was possible for the agent to experience a number

of hypothetical actions based on the learned world model. Each hypothetical action was

chosen randomly from among those previously experienced. As Sutton[1990] demonstrated,

combining hypothetical actions with physical actions can significantly improve the rate at

which Q-learning converges. Techniques other than random choice ([Moore & Akinson, 1993],

[Peng & Williams, 1993]) can improve the rate even more.

The results of the comparison between PPF and DYNA-style planning are shown in

Figure 4. All the curves are based on Q-values that have been zero-initialized. Ten planning

steps were experienced for each physical action. We see that PPF performs better than the

ten step planning case for the early trials but that the planning approach converges more

quickly to optimal values. Also included is one curve which is a combination of both PPF

and ten step planning. This approach provides the fastest convergence. A key benefit of

PPF is that it can be used in combination with existing techniques for accelerating Q-value

propagation. Figure 4 confirms that PPF, in conjunction with planning, improves upon the

results obtained by planning alone.
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Related Work

Slow learning rates are only one of the limitations of Q-learning. Formal convergence results

of Watkins and Dayan [1992] only hold when Q-values are represented as a table; for any

practical domain, the state space will be too large to represent all state-actions pairs ex-

plicitly so some form of state generalization will be required. Lin [1990] has reported good

results by combining a connectionist backpropagation mechanism [Rumelhart, 1986] for in-

put generalization with reinforcement learning techniques. Chapman and Kaelbling [1991]

present an algorithm which incrementally builds a tree-structured Q-table similar in some

respects to induced decision trees [Quinlan, 1986].

If an action model for the environment can be learned, a number of methods related to

heuristic search and dynamic programming can be used to exploit the action model. Several

techniques have been explored which attempt to prioritize the hypothetical experiences that

can be used to accelerate the propagation of the Q-values. Peng & Williams [1993] present

a technique called Queue-DYNA in which Q-value updates are prioritized and only those

having the highest priority are performed at each time step. Moore & Atkeson [1993] present

a similar technique they call Prioritized Sweeping. McCallum [1992] presents a related

method called Transitional Proximity Q-learning. These techniques tend to be based on

heuristic methods for focusing efforts on "interesting" parts of the Q-table.

Prioritized Sweeping and Queue-DYNA both tend to prefer Q-value updates that spread

out backward from the goal state. Korf [1990] provides an algorithm called LRTA* which

works outward from the current state and Barto et al. [1993] generalize Korf's algorithm

and relate it to Q-learning methods. Mahadevan [1992] infers action models using a sta-

tistical clustering technique and then uses these models to perform a multi-step lookahead

to help select the most appropriate action. Mahadevan's work also provides an example of

a technique which assumes a reward gradient is available to speed up learning during the

initial trials. Once a learned world model is available, a large body of results from the search

and planning literature potentially become relevant and work is underway to exploit these



relationships. Singh [1992] provides one example where hierarchical planning methods are

being integrated with reinforcement learning methods.

Teaching methods are appealing because, unlike the previous methods, they help to re-

duce the time required until initial reward is achieved. Whitehead [1991] provides results

which emphasize that lack of a priori knowledge can make the search during initial trials

intractable. He proposes a teaching method called "Learning with an External Critic" where

a mentor watches the learner and generates immediate rewards in response to its most re-

cent actions. He also presents a method, "Learning by Watching", where an agent gains

experience vicariously by observing the behaviors of other agents. Other teaching methods

are possible. Clouse & Utgoff [1992] present a method that allows a teacher to occasionally

suggest an action when it appears the agent is not progressing well. Lin [1991] presents a

technique called experience replay, which can be used in conjunction with teaching, that

collects a sequence of physical experiences and then replays them backwards to help acceler-

ate the propagation of Q-values. The disadvantage of teaching methods is that they require

online involvement of the mentor. Teaching methods do not directly provide a means for

specifying simple heuristic knowledge (e.g., "go east") before the agent begins experiencing

the environment.

This work has been motivated by the work of Drummond et al. [1993] where a programmer-

provided policy is used to bias search to areas more likely to contain solutions. Finally, there

has been other work which has also attempted to integrate prior knowledge within a rein-

forcement learning framework. Berenji [1992] represents a priori knowledge in the form of

fuzzy control rules and uses reinforcement learning methods to improve the performance of

these control rules. Franklin [1987] represents a priori knowledge as a conventionally de-

signed fixed controller and then uses reinforcement learning to improve the performance of

the controller.

6 Conclusions and Future Work

A range of approaches are being developed which accelerate Q-learning rates. However,

most of these approaches do nothing to reduce the time required until initial reinforcement

is received. If nothing but a random initial policy is available, time to initial reward can

be exponential in the solution length. Prior Policy Feedback (PPF) directly addresses this

problem by providing a simple means of encoding a priori knowledge that does not adversely

interact with the normal Q-learning update mechanisms. PPF has been experimentally

shown to perform significantly better than intuitively similar methods that involve initializing

selected Q-values in the Q-value table. A further advantage of PPF is its ability to be used

in combination with other methods that heuristically prioritize Q-value updates to speed the

propagation of Q-values.

PPF works well when the a priori knowledge to be encoded is static. However, there will

be cases when heuristics need to be time-varying, perhaps because the reward structure is

9



changing. Sincethe prior policy of PPF is ignoredonce Q-valueshavebegun to propagate
throughout the space,there is no obvious way to reuse the advice of the prior policy, even

if it becomes advantageous to do so. Further work is needed to attempt to extend the

applicability of PPF to more complex situations. Additionally, PPF may also be useful for

other non Q-learning reinforcement learning approaches but these connections have not yet

been pursued. As Kaebling [1990] concludes in her dissertation, "Finally, we might start from

a complete or partial program specified in terms of condition-action rules. An interesting

research direction would be to develop representations of programs that are amenable to

adjustment using reinforcement-learning methods." Although PPF policies are not directly

modified by reinforcement learning methods, the encouraging results obtained with PPF

suggest further work in this direction will be fruitful.
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